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Abstract

How to assess the temperature sensitivity (Q10) of soil organic matter (SOM) decomposition and its regional variation

with high accuracy is one of the largest uncertainties in determining the intensity and direction of the global carbon

(C) cycle in response to climate change. In this study, we collected a series of soils from 22 forest sites and 30 grass-

land sites across China to explore regional variation in Q10 and its underlying mechanisms. We conducted a novel

incubation experiment with periodically changing temperature (5–30 °C), while continuously measuring soil micro-

bial respiration rates. The results showed that Q10 varied significantly across different ecosystems, ranging from 1.16

to 3.19 (mean 1.63). Q10 was ordered as follows: alpine grasslands (2.01) > temperate grasslands (1.81) > tropical for-

ests (1.59) > temperate forests (1.55) > subtropical forests (1.52). The Q10 of grasslands (1.90) was significantly higher

than that of forests (1.54). Furthermore, Q10 significantly increased with increasing altitude and decreased with

increasing longitude. Environmental variables and substrate properties together explained 52% of total variation in

Q10 across all sites. Overall, pH and soil electrical conductivity primarily explained spatial variation in Q10. The gen-

eral negative relationships between Q10 and substrate quality among all ecosystem types supported the C quality

temperature (CQT) hypothesis at a large scale, which indicated that soils with low quality should have higher tem-

perature sensitivity. Furthermore, alpine grasslands, which had the highest Q10, were predicted to be more sensitive

to climate change under the scenario of global warming.
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Introduction

Soil is the largest carbon (C) pool in terrestrial ecosys-

tems, with the decomposition of soil organic matter

(SOM) representing one of the major CO2 fluxes in the

global C cycle (Schlesinger & Andrews, 2000). Global

warming is expected to increase atmospheric CO2 con-

centrations by accelerating SOM decomposition, result-

ing in a positive feedback between the global C cycle

and climate warming (Jones et al., 2003, IPCC, 2013).

The strength and direction of this feedback is largely

dependent on the temperature sensitivity (Q10) of SOM

decomposition (Jones et al., 2003; Friedlingstein et al.,

2006), which represents a major source of uncertainty

in model projections of climate change (Friedlingstein

et al., 2006). Some studies have attempted to investigate

regional variation in SOM decomposition among differ-

ent soil types and under different climatic conditions

(Colman & Schimel, 2013; Craine et al., 2010; Song et al.,

2014; Xu et al., 2015a). However, controversy over soil

C dynamics remains, due to large spatial heterogeneity

and variation in the inherent decomposability of SOM

(Schmidt et al., 2011). Thus, it is necessary to quantify

the spatial variation and the fundamental drivers of Q10

to obtain accurate predictions of the amount of C

released through SOM decomposition and, ultimately,

the feedback to climate change (Jones et al., 2003;

Friedlingstein et al., 2006).

Soil organic matter decomposition is affected by the

climate (Schimel et al., 1994; Wang et al., 2013), the ini-

tial quality and quantity of SOM (Wild et al., 2014; Hol-

den et al., 2015), and soil microbial characteristics (Fang

et al., 2005b; Baumann et al., 2013). However, these fac-

tors might interact with each other, making it difficult

to discern factors that covary in the process of interest

(Colman & Schimel, 2013). Using a large-scale incuba-

tion experiment, Colman & Schimel (2013) found that

soil microbial biomass was the most important factor

explaining the spatial variation of soil microbial
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respiration in North America, while climate and sub-

strate only exerted slight indirect effects through their

impacts on microbial biomass. Recently, a study con-

ducted under varying temperatures of 5–25 °C demon-

strated that precipitation was the best predictor of soil

microbial respiration rates in the alpine steppes of

China (Ding et al., 2016). In previous decades, the C

quality temperature (CQT) hypothesis was proposed to

explain the relationship between SOM decomposition

and soil substrate quality across different ecosystems.

This hypothesis demonstrated that the biochemically

recalcitrant C pool is more sensitive to changes in tem-

perature than the labile C pool (Fierer et al., 2005;

Craine et al., 2010). However, different incubation

methods and different definitions of the recalcitrant C

pool led to a discrepancy in predicting the response of

SOM decomposition to climate change (Lloyd & Taylor,

1994; Giardina & Ryan, 2000; Fang et al., 2005a; Reich-

stein et al., 2005). Furthermore, large-scale predictions

of the C balance requires improved parameter support

for SOM decomposition (Jones et al., 2003; Friedling-

stein et al., 2006). However, the presence of differences

in experimental methods among different studies

makes it difficult to compare the same parameters

across different regions. This issue generates great

uncertainty in predicting how the soil C cycle of the ter-

restrial ecosystem feeds back to climate change.

Traditional incubation experiments of SOM decom-

position were conducted at several different but con-

stant temperatures and were measured at intervals of

days, weeks, or months (Knorr et al., 2005; Conant et al.,

2011). As a result, it was difficult to simulate the com-

mon scenarios of periodic and continuous temperature

change in the field. First, there is an inherent shortcom-

ing in using constant incubation temperature, because

large differences in incubation temperature might

result in noticeable differences in substrate depletion

and microbial adaption at constant temperature. In

turn, these issues influence the accuracy of observed

Q10, especially in long-term incubation experiments

(Reichstein et al., 2000; Conant et al., 2008). Second, the

lower frequency of measurements was not statistically

sufficient to simulate the relationship between SOM

decomposition rates and temperature accurately.

Within a climate warming scenario, accurate descrip-

tions of these relationships are needed to decrease

uncertainty when predicting future SOM dynamics as

simulated by Earth system models (Jones et al., 2003;

Friedlingstein et al., 2006).

Forests and grasslands represent the two major types

of terrestrial ecosystems that cover 70% of the land’s

surface, and store 55–75% of soil organic C (SOC)

(Bonan, 2008; Yoshitake et al., 2014). Therefore, small

changes of SOM decomposition rates in forest and

grassland ecosystems are expected to cause large uncer-

tainty in predicting how the global C cycle feeds back

to climate change. The current study conducted a com-

prehensive study of 22 forest soils and 30 grassland

soils to explore regional variation in Q10 and its under-

lying mechanisms. To accomplish this objective, we

conducted a novel incubation experiment with periodi-

cally changing temperature (5–30 °C), in parallel to

measuring soil microbial respiration rates (Rs) continu-

ously. Specifically, the main objectives of study were to:

(1) investigate the regional variation in Q10 across dif-

ferent ecosystems; and (2) explore the fundamental dri-

vers of spatial variation in Q10 across different

ecosystems. We hypothesized that forest and grassland

ecosystems have significantly different Q10 values, due

to large differences in soil properties and soil microbial

properties. We also hypothesized that the mechanisms

regulating spatial variation in Q10 differ across different

ecosystems.

Materials and methods

Study area and field sampling

We collected soils from 22 forests in the tropical, subtropical,

temperate, and cold-temperate regions of China. We also col-

lected soils from 13 alpine grasslands in the Tibetan Plateau

and from 17 temperate grasslands in Inner Mongolia (Fig. 1).

Mean annual temperature (MAT) at these sites ranged from

�3.67 to 23.15 °C, while mean annual precipitation (MAP)

ranged from 472.9 to 2265.8 mm. All of the forest sampling

sites were located in well-protected national nature reserves to

minimize the effect of anthropogenic disturbance. These sites

were also located in areas with relatively homogenous vegeta-

tion and soil that were strongly representative of each forest

type. Grassland sites in Inner Mongolia were located along the

transect extending from Baokang Town in the east to Siziwang

Banner in the west (Xu et al., 2016). Grassland sites in the Tibe-

tan Plateau were selected from a transect extending from

Changdu County to Gaer County (Li et al., 2015).

Soil samples were collected between July and August 2013.

At each forest and grassland site, four sampling plots

(30 9 40 m) were established. Topsoil (0–10 cm) was collected

from 15 to 30 random locations within each plot. Subsequently,

the soil samples were combined to form a composite sample.

Visible roots and litter residues were manually removed from

each soil sample. Fresh soil samples were sieved through a 2-

mm mesh and divided into two subsamples. Approximately

100 g fresh soil was air-dried to analyze basic properties. The

remaining soil from each composite sample (2–3 kg) was

stored at 4 °C for the subsequent incubation experiments.

Measurement of soil chemical and microbial properties

In the laboratory, we measured the soil pH and soil electrical

conductivity (EC) of air-dried soils in a 1 : 2.5 (v/v) soil/water
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ratio using an Ultrameter-2 pH meter (Myron L. Company,

Carlsbad, CA, USA). Soil texture was measured with a

Mastersizer-2000 laser particle analyzer (Malvern Company,

Worcestershire, England). SOC was analyzed using the

H2SO4–K2Cr2O7 oxidation method (Nelson & Sommers, 1982).

Soil total nitrogen concentration (TN) was measured using a

modified Kjeldahl wet-digestion procedure (Gallaher et al.,

1976), with a 2300 Kjeltec Analyzer Unit (FOSS, Tecator,

H€ogan€as, Sweden). Dissolved organic carbon (DOC) was

extracted from incubated soil with distilled water (at a ratio of

1 : 5) and was analyzed with Liqui TOC II (Elementar, Hanau,

Germany; Gregorich et al., 2003). After a 2-week incubation

period, soil microbial phospholipid fatty acid (PLFA) biomar-

ker analysis was conducted following the method described

by B�a�ath & Anderson (2003) to obtain fungal, bacterial, and

actinomycete content (Frosteg�ard et al., 1993; Xu et al., 2015b).

Incubation experiment of SOM decomposition

Soils from all forests and grasslands were used in the incuba-

tion experiment. First, the soil samples (20 g, dry weight) were

placed in 150-mL polyethylene plastic bottles (four replicates

for each soil) and were adjusted to 50% water holding capacity

(WHC) by adding deionized water. The methods used to mea-

sure WHC are described in He et al. (2013). All samples were

then pre-incubated at 20 °C for 10 days to activate microor-

ganisms and to minimize the “pulse effect” (Fierer & Schimel,

2002). Plastic bottles were sealed with caps that had small

holes for ventilation and to reduce water loss. Water loss was

measured and corrected for a weight basis at intervals of 3–

4 days. Thereafter, all soil samples were adjusted to 55%

WHC and were placed in an incubator with automatic temper-

ature regulation that can gradually increase the temperature

from 5 to 30 °C and then decrease it from 30 to 5 °C, within

24-h incubation periods for 14 days (Wang et al., 2016).

Measurement of Rs

Rs was synchronously monitored after 14-day incubation with

an automatic sampling and analysis system. A new PRI-8800

Automatic Temperature Control Soil Flux System (PRI-8800;

Pre-Eco, Beijing, China) was newly developed and used to

measure RS as a modification of He et al. (2013). This system

enabled us to continuously vary incubation temperature, in

Fig. 1 Spatial distribution of field sampling sites in the forest and grassland ecosystems of China. [Colour figure can be viewed at

wileyonlinelibrary.com]
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parallel with measuring Rs at a high frequency (Rs was mea-

sured every 75 s) (He et al., 2013; Wang et al., 2016). In brief,

an electric water bath controlled by an automatic temperature

regulator (Julabo, Seelbach, Ortenau, Germany) was connected

to a Li-COR CO2 analyzer (Li-7100, LI-COR, Lincoln, NE,

USA), which records CO2 concentration every second. The

dynamics of Rs over a 24-h period were measured at 20-min

intervals for each sample, accompanied by a 12-h warming

and 12-h cooling phase. Overall, each sample was measured

72 times during a 24-h cycle. At the same time, soil tempera-

ture in plastic bottles was synchronously monitored with a

button thermometer (DS 1922L; Maxim Integrated, Dallas, TX,

USA). Rs was calculated from the slope of CO2 concentration

and specific transformation factors using Eqn. 1:

Rs ¼ C� V � a� b
m

; ð1Þ

where Rs is the rate of soil microbial respiration (lg CO2–C
g�1 soil day�1); C is the slope of CO2 concentration; V is the

volume of the incubation bottle and gas tube; m is soil dry

weight; a is the transformation coefficient of CO2 mass; and b
is the transformation coefficient of time.

To describe how microbial respiration rates (Rs) are corre-

lated with temperature, we calculated Q10 using Eqns (2) and

(3):

Rs ¼ A:ekT ; ð2Þ

Q10 ¼ e10k; ð3Þ
where Rs is the rate of soil microbial respiration (lg CO2–C
g�1 soil day�1) at a given temperature T (°C) and A and k are

the exponential fit parameters. Parameter ‘A’ represents the

basal microbial respiration rate at 0 °C and was used as a sim-

ple index of the overall SOM quality that might be utilized by

microbes at a specific time point (Mikan et al., 2002; Fierer

et al., 2005).

Statistical analyses

Before the analyses, variables that did not meet the assump-

tion of parametric statistical tests (normality and homoscedas-

ticity of errors) were log-transformed. Data normality was

tested with a Shapiro–Wilk test. Differences in Q10 across dif-

ferent ecosystems were tested using one-way analysis of vari-

ance (ANOVA) with LSD test. Regression analysis was used to

evaluate the relationships between Q10 and soil chemical

properties. General linear models (GLMs) were used to evalu-

ate the relative contribution of climatic factors to SOM decom-

position across different ecosystems.

Path analysis was used to evaluate the relationships

between multiple variables and to determine the direct and

indirect factors influencing Q10. Predicted causal relationships

between variables were based on prior knowledge of how soil

properties affect Q10. By the stepwise removal of nonsignifi-

cant paths in the initial model, we selected a final model that

best fit our data. The adequacy of the model was determined

by the v2-test, goodness of fit (GIF) index, and root mean

squared error of approximation (RMSEA) index. v2 was used

to test whether the model reasonably explained the patterns of

the data. Favorable model fits were suggested by no signifi-

cant difference on the v2-test (P > 0.05), high GIF (>0.9), and
low RMSEA (<0.08). Path analysis was conducted in AMOS 18.0

software (IBM, Chicago, IL, USA). Further statistical analyses

were conducted in SPSS 13.0 (IBM). A statistical probability of

P < 0.05 determined significance.

Results

Regional variations in the temperature sensitivity (Q10)
of SOM decomposition

Q10 is a key parameter used to describe the relation-

ships between the rate of SOM decomposition and

changing temperature. Our results showed that Q10

varied significantly across different ecosystem types

(range: 1.16–3.19; mean: 1.63; CV: 22%; Fig. 2). Q10 was

ordered: alpine grasslands (2.01) > temperate grass-

lands (1.81) > tropical forests (1.59) > temperate forests

(1.55) > subtropical forests (1.52). Furthermore, the Q10

of grasslands (1.90) was significantly higher than that

of forests (1.54) (P < 0.01; Fig. 3c). However, Q10 was

not significantly different among tropical, subtropical,

and temperate forest soils (P = 0.51; Fig. 3a), although

Q10 was higher in alpine grasslands than in temperate

grasslands (P = 0.059; Fig. 3b).

Overall, the Q10 of forest soils slightly increased

with increasing latitude, whereas the Q10 of grassland

soils decreased with increasing latitude, to some

extent (Fig. 4a). Furthermore, Q10 significantly

declined with increasing longitude in both forest and

grassland soils. Q10 increased significantly with

increasing altitude, whether in forest or grassland

ecosystems (Fig. 4b and c).

Fig. 2 Frequency distribution in the temperature sensitivity

(Q10) of soil organic matter decomposition across forest and

grassland sites. [Colour figure can be viewed at wileyonlineli-

brary.com]
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Factors influencing spatial variation in Q10

Q10 was influenced by a combination of climate

(MAT and MAP), soil chemical properties (DOC, soil

pH, soil EC), soil nutrients (NH4
+-N, inorganic-N),

and soil microbial properties (fungi, bacteria, and

actinomycetes) (Fig. S4). The dominant factors regu-

lating regional variation in Q10 differed across differ-

ent ecosystems. Overall, soil pH had the largest

positive prediction for variation in Q10 across all

ecosystems, followed by the ratio of soil actino-

mycetes : bacteria (A/B) and soil EC content. In con-

trast, DOC negatively affected Q10 across all

ecosystems (Fig. 5). The Q10 in forest soils was

mainly determined by the soil C : N ratio and soil

A/B (Fig. 6a). In comparison, soil actinomycete con-

tent and soil A/B strongly regulated the spatial

variation of Q10 in grassland ecosystems (Fig. 6b). Of

note, the dominant factors affecting Q10 even differed

within the same ecosystem type. For example, in

alpine grasslands, soil A/B strongly influenced varia-

tion in Q10 (Fig. 6c). In contrast, soil EC was the

dominant factor influencing the spatial variation of

Q10 in temperate grasslands (Fig. 6d).

We used the parameter A in Eqn. 2 to represent the

overall quality of SOM across different soils. As a

result, we found that Q10 was significantly negatively

correlated with the soil quality index (A) across all

ecosystem types (Fig. 7). This finding supports the C

quality temperature (CQT) hypothesis, which states

that soils with low quality should have higher tempera-

ture sensitivity, with SOM decomposition responding

to changing temperature, irrespective of ecosystem

type.

Fig. 3 Regional variation in the temperature sensitivity (Q10) of soil organic matter decomposition across different ecosystem types.

Forest (a), grassland (b), whole ecosystem (c). *Data are represented as mean �1 SD; data with the same letters indicated no significant

difference at P = 0.05 level. [Colour figure can be viewed at wileyonlinelibrary.com]

Fig. 4 Spatial patterns in the temperature sensitivity (Q10) of soil organic matter decomposition along latitudinal (a), longitudinal (b),

and altitudinal (c) gradients for different ecosystems. *Significant relationship at P = 0.05 level. [Colour figure can be viewed at

wileyonlinelibrary.com]
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Discussion

Regional variation in Q10 across different ecosystems

The Q10 values of grasslands and forests ranged from

1.16 to 3.19 (mean 1.63), with these values significantly

differing within and across ecosystems. The Q10 values

obtained in our study were comparable to the Q10 val-

ues measured in the field. For example, Raich & Sch-

lesinger (1992) reported a Q10 range of 1.3–3.3 (mean

2.4) for different biomes of the world based on a meta-

analysis of in situ measurements. Xu et al. (2015a)

Fig. 5 Path analysis (a) and standardized total effect (b) of climatic variables and soil properties on spatial variation in temperature

sensitivity (Q10). Casual influence of MAT and MAP (exogenous variables) on soil actinomycetes : bacteria (A/B), soil pH, soil electri-

cal conductivity (EC), and dissolved carbon (DOC) (endogenous variables). Models satisfactorily fitted to data based on v2 and RMSEA

analyses [v2 = 1.15, df = 4, P = 0.87, GFI = 0.99, RMSEA < 0.001). Solid and dashed arrows represent the positive and negative effects

in a fitted structural equation model, respectively. Widths of the arrows indicate the strength of the casual relationship. Percentages

(R2) close to endogenous variables indicate the variance explained by climatic and soil factors. *, **, and *** represent a significant rela-

tionship at P = 0.05, P = 0.01, and P = 0.001 level, respectively. [Colour figure can be viewed at wileyonlinelibrary.com]

Fig. 6 Standardized total effects of different factors on temperature sensitivity (Q10) across different ecosystems. All forests (a), all grass-

lands (b), alpine grasslands (c), temperate grasslands (d). Total effects equaled the direct effect plus the indirect effect and were derived

from structural equation modeling. MAP, mean annual precipitation; MAT, mean annual temperature; C : N ratio, the ratio of SOC to

total nitrogen concentrations; A, actinomycetes; A/B, actinomycete : bacteria ratio; DOC, dissolved organic carbon; EC, electrical conduc-

tivity; G–, gram-negative bacteria; Min N, total inorganic nitrogen content. [Colour figure can be viewed at wileyonlinelibrary.com]
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obtained Q10 values ranging from 1.10 to 5.18 (mean

2.51) in China’s forest ecosystems based on data inte-

gration of field observations. Furthermore, in labora-

tory incubation experiment, Quan et al. (2014) reported

Q10 values ranging from 1.40 to 2.31 among different

forest types. Fierer et al. (2006) conducted a continental-

scale analysis with different constant incubation

temperatures and found a large range in Q10 values,

ranging from 2.2 to 4.6, with an average of 3.0. Our

wide range of Q10 values combined with other field

and laboratory incubation experiments suggests that

the use of a single Q10 in soil C models could lead to a

significant deviations when estimating the sensitivity of

soil C dynamics to climate change (Friedlingstein et al.,

2006; Zhou et al., 2009).

Spatial patterns in Q10 along latitudinal, longitudinal,
and altitudinal gradients

Overall, Q10 values increased significantly with increas-

ing altitude and decreased with increasing longitude,

supporting some previous findings (Guti�errez-Gir�on

et al., 2015; Xu et al., 2015a). The higher Q10 values at

higher altitudes and lower longitudes indicated that

these regions are more sensitive to climate change. The

longitude- and altitude-associated changes in other fac-

tors (e.g., MAT, MAP, soil C : N ratio, and soil

microbes) were significantly correlated with Q10. MAT

and MAP indirectly influenced Q10 by affecting soil

microbial properties and soil properties (Guti�errez-

Gir�on et al., 2015). Furthermore, the observed spatial

patterns in Q10 with altitude and longitude were mainly

caused by lower microbial biomass. In contrast, lower

soil inorganic nitrogen and higher pH were correlated

with increasing altitude and decreasing longitude in

this study. However, Q10 only slightly increased with

increasing latitude in forest ecosystems, whereas it

slightly decreased with increasing latitude in grassland

ecosystems. These results indicate that high-altitude or

low-longitude regions are more sensitive to climate

change, due to their relatively higher Q10 values.

Factors controlling regional variation in Q10

Overall, soil pH was the dominant factor influencing

spatial patterns in Q10 at a large scale, followed by soil

electrical conductivity (EC), the ratio of soil actino-

mycetes : bacteria (A : B), and soil dissolved organic

carbon (DOC) content. Soil pH significantly affected

Q10 because it directly influenced the composition of

the microbial community and enzyme activity, along

with substrate availability (Priha et al., 2001). With

increasing soil pH, both the relative abundance and

diversity of bacteria and fungi increased (Rousk et al.,

2010). The increase in fungi was relatively faster than

that of bacteria, resulting in a high fungi : bacteria ratio

with increasing pH (Rousk et al., 2010). Fungi are also

more likely to decompose recalcitrant SOM, which

requires higher activation energy, resulting in an

increase in Q10 values with increasing soil pH. The ratio

of A : B was the dominant factor regulating Q10 in

alpine grasslands. Actinomycetes are slow-growing

gram-positive bacteria that have a filamentous struc-

ture similar to that of fungal hyphae (Chapin et al.,

2011). The high A : B ratio indicated a high efficiency

in decomposing SOM, resulting in a positive relation-

ship between Q10 and the ratio of A : B (Table S2).

In addition, soil EC significantly influences Q10 by

indirectly affecting soil microorganism characteristics

and metabolic activity (Xu et al., 2006). Soil microbial

Fig. 7 General negative relationships between temperature sensitivity (Q10) and substrate quality across all ecosystem types. Forests

(a), grasslands (b), all ecosystems (c). Fitted function: Q10 = x0 + a 9 exp (b 9 A). x0, a, and b are fitted coefficients. *Significant rela-

tionship at P = 0.05 level. [Colour figure can be viewed at wileyonlinelibrary.com]
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biomass declined significantly with increasing EC,

whereas the metabolic quotient (qCO2) was positively

correlated with EC (Iwai et al., 2012). Thus, the signifi-

cant linear relationships between Q10 and qCO2 might

explain why Q10 increases with increasing EC (Luan

et al., 2014). DOC is an indicator of easily decomposable

substrate. The Michaelis–Menten equation is used to

describe the relationship between Q10 and soil substrate

concentrations (Razavi et al., 2015). Michaelis–Menten

equation-maximum enzyme activity (Vmax) and the

half-saturation constant (Km) are temperature sensitive

(Davidson & Janssens, 2006). Because both Vmax and

Km values usually increase with temperature, a cancel-

ing effect occurs, which is more pronounced when sub-

strate concentrations are lower than or close to Km

(Gershenson et al., 2009). With decreasing DOC content,

this canceling effect might be more significant, resulting

in Q10 declining with decreasing DOC content.

We also found that Q10 was significantly affected by

soil substrate quality across all ecosystems, based on

the negatively exponential relationships between Q10

and the substrate quality index (Craine et al., 2010).

Based on the fundamental principles of enzymes kinetic

and the Arrhenius equation, the CQT hypothesis sug-

gests that Q10 should increase with increasing activa-

tion energy of the reaction (Bosatta & �Agren, 1999;

Davidson & Janssens, 2006; Craine et al., 2010). There-

fore, the decomposition of biogeochemically recalci-

trant organic matter (i.e., requiring higher activation

energy to degrade) should generally be more sensitive

to changes in temperature than the decomposition of

more labile organic matter (Craine et al., 2010). Further-

more, we found that the soil C : N ratio was the main

factor regulating Q10 in forest ecosystems. In general,

the soil C : N ratio is considered a good indicator of

soil quality (Sollins et al., 1996). SOM with high C : N

ratios being commonly derived from the litter of boreal

forests. As a result, this type of SOM is considered a

low-quality or recalcitrant substrate. According to CQT

hypothesis, recalcitrant substrate characterized with

high C : N should have greater Q10 than substrates

with relatively lower C : N. Overall, the dominant fac-

tors regulating Q10 across different ecosystems is differ-

ent. Thus, future models predicting soil C dynamics

and C cycle-climate change feedback should account

for this variation across different ecosystems.

High sensitivity of grassland ecosystems to temperature
change

Soil organic matter decomposition in grassland ecosys-

tems, especially alpine grasslands, was more sensitive

than that in forest ecosystems, which was consistent

with previous studies (Arevalo et al., 2012). Through an

incubation experiment, Arevalo et al. (2012) showed

that the Q10 of grasslands (2.13) was significantly higher

than that of native aspen forests (1.73). This difference

was attributed to the higher C and N content of grass-

lands than that of aspen forests. In the current study,

grasslands had higher Q10 than forests because grass-

lands had higher pH value than forests. Higher pH val-

ues are associated with the higher microbial activity of

grasslands (Reth et al., 2005).

The Q10 values in different forest types were not sig-

nificantly different; however, the Q10 of temperate for-

ests was slightly lower than that of tropical forests. In

general, deciduous coniferous forests (DCF) tend to be

distributed in temperate regions, whereas evergreen

broadleaved forests (EBF) tend to be distributed in

tropical regions. Previous studies demonstrated that

forest type affects the Q10 value. For example, the Q10

value of DCF was significantly higher than that of EBF,

due to the geographic and climatic conditions where

vegetation grows (Zheng et al., 2009; Xu et al., 2015a).

The altitude-caused differences in temperature and soil

C pools might cause differences in the Q10 value

between the two forest types (Xu et al., 2015a). The Q10

value in deciduous forests was significantly higher than

that in needle-leafed forests, despite having similar cli-

matic and soil conditions in a mixed forest in Belgium.

This difference was due to deciduous forests exhibiting

greater seasonal variation in plant growth and phenol-

ogy than evergreen forests (Curiel Yuste et al., 2004).

Furthermore, we found that the alpine grasslands on

the Tibetan Plateau were more sensitive to temperature

change than the temperate grasslands in Inner Mongo-

lia. Soils with high SOC content are characterized by a

capacity to adsorb substantial amount of C compounds

onto mineral soil and have low rates of respiration per

unit SOC and vice versa (Doetterl et al., 2015). The

Michaelis–Menten equation indicates that low substrate

availability due to physical protection reduces the tem-

perature response of SOC. Therefore, the higher SOC

content with low substrate availability in alpine grass-

lands should cause lower Q10 than temperate grass-

lands with low SOC content and higher substrate

availability (Table S1). However, electrical conductivity

was the main positive factor affecting Q10; thus, higher

electrical conductivity in alpine grasslands might

explain why Q10 is higher in alpine grasslands than in

temperate grasslands (Table S1). In conclusion, soils in

alpine grasslands are more vulnerable to climate

change under global warming scenarios due to their

higher Q10 values. Thus, in the future, more studies are

required to predict the soil C dynamics and feedback of

the soil C cycle to climate change with greater accuracy.

In summary, the temperature sensitivity (Q10) of

SOM decomposition varied significantly across

© 2017 John Wiley & Sons Ltd, Global Change Biology, 23, 3393–3402
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different ecosystems. SOM decomposition in the alpine

grasslands of the Tibetan Plateau and higher altitude

ecosystems were more sensitive to climate change, due

to their higher Q10 values. Factors regulating SOM

decomposition across different regions were different.

Overall, soil pH was the dominant factor regulating

regional variation in Q10 through an indirect influence

on soil microbes. The combination of climate, soil

chemical properties, and soil microbial properties

explained most of the variations in Q10 (55–92%). These

findings advance our understanding on regional varia-

tion in Q10 and how it is likely to be driven by global

warming scenarios. Because Q10 varied greatly among

different ecosystems, future studies focusing on model-

ing the feedback between the global C cycle and climate

change should consider this variation.
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